Additive manufacturing for in situ repair of osteochondral defects.
نویسندگان
چکیده
Tissue engineering holds great promise for injury repair and replacement of defective body parts. While a number of techniques exist for creating living biological constructs in vitro, none have been demonstrated for in situ repair. Using novel geometric feedback-based approaches and through development of appropriate printing-material combinations, we demonstrate the in situ repair of both chondral and osteochondral defects that mimic naturally occurring pathologies. A calf femur was mounted in a custom jig and held within a robocasting-based additive manufacturing (AM) system. Two defects were induced: one a cartilage-only representation of a grade IV chondral lesion and the other a two-material bone and cartilage fracture of the femoral condyle. Alginate hydrogel was used for the repair of cartilage; a novel formulation of demineralized bone matrix was used for bone repair. Repair prints for both defects had mean surface errors less than 0.1 mm. For the chondral defect, 42.8+/-2.6% of the surface points had errors that were within a clinically acceptable error range; however, with 1 mm path planning shift, an estimated approximately 75% of surface points could likely fall within the benchmark envelope. For the osteochondral defect, 83.6+/-2.7% of surface points had errors that were within clinically acceptable limits. In addition to implications for minimally invasive AM-based clinical treatments, these proof-of-concept prints are some of the only in situ demonstrations to-date, wherein the substrate geometry was unknown a priori. The work presented herein demonstrates in situ AM, suggests potential biomedical applications and also explores in situ-specific issues, including geometric feedback, material selection and novel path planning techniques.
منابع مشابه
Composite scaffolds for osteochondral repair obtained by combination of additive manufacturing, leaching processes and hMSC-CM functionalization.
Articular repair is a relevant and challenging area for the emerging fields of tissue engineering and biofabrication. The need of significant gradients of properties, for the promotion of osteochondral repair, has led to the development of several families of composite biomaterials and scaffolds, using different effective approaches, although a perfect solution has not yet been found. In this s...
متن کاملAutogenous Osteochondral Transplantation Mosaicplasty (An Animal Study on Sheep)
Background: Autogenous osteochondral grafting of articular defect in weight-bearing surface of large joints has proven to be a proper biomechanical and physiological solution for localized full-thickness defects.Objective: To study the gross and histopathological results of mosaicplasty in an animal model (sheep’s medial femoral condyle), evaluating the factors of defect and graft size, assessi...
متن کاملRepair of articular cartilage defects with a novel injectable in situ forming material in a canine model.
We developed an ultra-purified in situ forming gel as an injectable delivery vehicle of bone marrow stromal cells (BMSCs). Our objective was to assess reparative tissues treated with autologous BMSCs implanted using the injectable implantation system into osteochondral defects in a canine model. Forty-eight osteochondral defects in the patella groove of the knee joint were created in 12 adult b...
متن کاملPlatelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model
BACKGROUND Current research aims to develop innovative approaches to improve chondral and osteochondral regeneration. The objective of this study was to investigate the regenerative potential of platelet-rich plasma (PRP) to enhance the repair process of a collagen-hydroxyapatite scaffold in osteochondral defects in a sheep model. METHODS PRP was added to a new, multi-layer gradient, nanocomp...
متن کاملAugmentation of osteochondral repair with hyperbaric oxygenation: a rabbit study
BACKGROUND Current treatments for osteochondral injuries often result in suboptimal healing. We hypothesized that the combination of hyperbaric oxygen (HBO) and fibrin would be superior to either method alone in treating full-thickness osteochondral defects. METHODS Osteochondral repair was evaluated in 4 treatment groups (control, fibrin, HBO, and HBO+fibrin groups) at 2-12 weeks after surgi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biofabrication
دوره 2 3 شماره
صفحات -
تاریخ انتشار 2010